首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195篇
  免费   8篇
  国内免费   4篇
测绘学   3篇
大气科学   16篇
地球物理   45篇
地质学   60篇
海洋学   25篇
天文学   40篇
综合类   1篇
自然地理   17篇
  2022年   3篇
  2021年   4篇
  2020年   3篇
  2019年   3篇
  2018年   9篇
  2017年   3篇
  2016年   5篇
  2015年   2篇
  2014年   8篇
  2013年   9篇
  2012年   7篇
  2011年   22篇
  2010年   3篇
  2009年   4篇
  2008年   11篇
  2007年   2篇
  2006年   7篇
  2005年   7篇
  2004年   6篇
  2003年   4篇
  2002年   3篇
  2001年   4篇
  2000年   7篇
  1999年   6篇
  1998年   3篇
  1997年   3篇
  1995年   2篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1989年   2篇
  1987年   2篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   3篇
  1981年   6篇
  1980年   4篇
  1979年   1篇
  1978年   1篇
  1977年   2篇
  1975年   4篇
  1974年   6篇
  1973年   2篇
  1972年   2篇
  1971年   1篇
  1969年   1篇
  1967年   1篇
  1966年   1篇
  1932年   1篇
排序方式: 共有207条查询结果,搜索用时 24 毫秒
81.
The genesis of sediment-hosted,exhalative zinc + lead deposits   总被引:2,自引:0,他引:2  
Large sediment-hosted lead+zinc deposits like Mount Isa, McArthur River, Navan, Rammelsberg and Sullivan form a distinctive group characterised by stratiform, syngenetic sulphide ores that formed in local basins on the sea floor as a result of protracted hydrothermal activity accompanying continental rifting. Generally there is a development of a sedimentary pre-ore phase mineralization often featuring manganese followed by zinc±lead, iron and chert. Lower main phase zinc+lead lenses are usually almost devoid of copper but Cu tenors increase toward the middle or top of the ore sequences. Hanging wall trace element haloes are common. These characteristics are accounted for by deriving the ore solutions from subsurface convective circulation of modified highly saline seawater. The circulation is initiated during rifting and driven by a high geothermal gradient. As a result of continued extensional strain and cooling of the rock column the brittle-to-ductile transition zone is depressed and the circulation penetrates to greater depth with time. Of the ore metals the downward-penetrating convection fluids first leach and transport zinc and lead, but with increasing temperature are later able to leach and transport some copper. Unless convective circulation ceases the metal sequence generally reverses as the cooling phase sets in. The minimum distance separating major coeval orebodies of this type is 18 km which is a function of the size of the convective systems.  相似文献   
82.
The South Qilian belt mainly comprises an early Paleozoic arc-ophiolite complex, accretionary prism, microcontinental block, and foreland basin. These elements represent accretion-collision during Cambrian to Silurian time in response to closure of the Proto-Tethyan Ocean in the NE of the present-day Tibet Plateau. Closure of the Proto-Tethyan Ocean between the Central Qilian block and the Oulongbuluke block and the associated collision took place from NE to SW in a zipper-like style. Sediment would have been dispersed longitudinally SW-ward with a progressive facies migration from marginal alluvial sediments toward slope deep-water and deep-sea turbidites. This migration path indicates an ocean basin that shrank toward the SW. The Balonggongga'er Formation in the western South Qilian belt represents the fill of a latest Ordovician-Silurian remnant ocean basin that separated the Oulongbuluke block from the Central Qilian block, and records Silurian closure of the Proto-Tethyan Ocean and subduction beneath the Central Qilian block. However, alluvial deposits in the Lajishan area were accumulated in a retro-foreland basin, indicating that continent-continent collision in the eastern South Qilian belt occurred at c. 450–440 Ma. These results demonstrate that the Proto-Tethyan Ocean closed diachronously during early Paleozoic time.  相似文献   
83.
Trace components in fluid inclusions from the Aberfoyle tin-tungsten deposit in Tasmania, Australia, were examined by thermal decrepitation-mass spectrometry. The technique involves the decrepitation of fluid inclusions by stepwise heating in the source of a mass spectrometer. In addition to water, other species identified were carbon dioxide and hydrocarbons. Detailed analysis of these hydrocarbons showed that they ranged in carbon number from C1 up to at least C33 and probably comprised, in part, biological marker compounds, previously unreported in such high-temperature environments. Their presence suggests that the fluid responsible for mineralisation was not entirely magmatic but contained a non-magmatic component evolved through fluid-rock interaction in the sedimentary country rocks.  相似文献   
84.
Thermogravimetric Fourier transform infrared spectroscopy (TG-FTIR) analyses were carried out on two sets of isolated kerogens covering a wide maturity range from low mature (0.46% Ro) through the end of oil and gas generation (maximum Ro = 5.32%). Data onweight percent and Tmax for evolution of methane, volatile tars, ethylene, SO2, NH3, CO2, and CO are reported. The Tmax of methane shows the most consistent response to increasing maturation in both sets of samples. Results are comparable to those of whole rocks from an Alaskan North Slope well analyzed previously. The collective data for both whole rocks and isolated kerogens shows a generally linear correlation between %Ro and Tmax of methane, with the exception of Ro of about 2.0% where a dip in the curve occurs. The slope of the correlation line was steeper for the predominantly terrigenous Wilcox kerogen than for more marine Colorado kerogen or for the Alaskan North Slope whole rock samples, probably reflecting differences in the chemical nature of various kerogen sets, which is also reflected by differences in the shapes of the pyrolysis curves of SO2, CO2, CO, H2O, and ethylene. These preliminary data indicate that Tmax of methane is a good maturation indicator for whole rocks and isolated kerogens up to an Ro of about 4%, which includes all of the wet gas and a considerable portion of the dry gas generation zones. This correlation was also observed for samples containing migrated bitumen, where it was not possible to obtain a reliable Tmax for the volatile tar (S2) peak. The more terrigenous Wilcox kerogens also showed a good correlation of the Tmax of ethylene with %Ro. Tmax of ammonia evolution did not correlate with maturity and occurred 100–200°C lower than previously found for whole rocks, consistent with a whole-rock source of pyrolytic ammonia for Alaskan whole rock samples. HI and OI indices were calculated in several ways and plotted to reflect kerogen type as well as both the residual oil and gas generation potential. The ratio of pyrolyzable to combustible sulfur (evolved as SO2) was independent of maturity and showed a clear difference between the more terrigenous Wilcox kerogens and the more marine Colorado kerogens.  相似文献   
85.
Primary and placer gold deposits are mined from the Pan-African Adola volcano-sedimentary sequence, in southern Ethiopia. Two major mineralized belts can be recognized: the Megado (‘Gold Belt’) and the Kenticha Belts. The Kenticha Belt is also known for its rare metal mineralization. Extensive exploration of the area resulted in two most important primary gold deposits of Lega Dembi and Sakaro. The primary gold deposits are classified into four classes based on their geological setting:
- auriferous veins, lodes, stockworks and silicified zones disseminated in schistose rocks
- gold associated with quartzite
- gold mineralization confined to conglomerates and meta-arkoses
- auriferous quartz veins in high grade gneiss rocks
This classification provides a useful guide for future exploration programme  相似文献   
86.
The 14 February 2006 Phodong (Sikkim) earthquake of moderate magnitude (Mw 5.3) triggered several aftershocks that were recorded by a local seismic network. The thrust earthquake is part of the continuing earthquake activity in the Himalayan seismic belt region that occurs on the detachment or ramp under the Higher Himalaya. The aftershocks of the earthquake occurred in increased stress regions caused by the earthquake rupture. Triggering of aftershocks by such a moderate magnitude earthquake implies that the faults in the Himalaya are critically stressed and even a small change of stress, about 0.001–0.002 MPa, can trigger earthquakes on such faults.  相似文献   
87.
Of recent, adsorption process has gained a lot of attention as a cheap and effective means of removing trace metals from wastewater prior to discharge into water bodies. Being flexible in design and operation, the process has enabled an optimal recovery of trace metals such that the treated effluents meet the desired standards for waste disposal. Mercury is a toxicant released into the environment from natural and anthropogenic sources. It is notorious for having an unusual tendency to bio‐accumulate and persist in the food chain. Presence of mercury in food, especially those of aquatic sources has drastic implications on human health. Therefore, efforts have been made to develop and optimize low‐cost activated carbon (AC) as adsorbents for scavenging mercury from aqueous effluents. Herein, how mercury accumulates across the food chain, its health implications, and the recent advancement in the use of low‐cost ACs as adsorbent for trapping mercury from wastewater are highlighted. Relationship between the mercury removal efficiency and the surface morphology of the adsorbents as well as the influence of prevailing experimental condition on the sorption process were addressed. Challenges and future prospects of the use of low‐cost adsorbents in addressing mercury pollution in the environment are discussed.  相似文献   
88.
89.
The catalytic destruction of stratospheric ozone by the oxides of nitrogen is believed to be an important part of the global ozone balance. The lack of sufficient measurements of NO x concentrations has impeded efforts to quantify this process. Recent measurements of stratospheric nitrogen dioxide from ground-based stations as well as aircraft and balloons have provided a first approximation to a global distribution of NO2 vertical columns at sunset. These observed vertical columns have been translated into time-dependent vertical NO2 profiles by means of a one-dimensional atmospheric photochemical model. Using recent observations of air temperature and ozone along with this information, the independent instantaneous (one second) rates of ozone production from oxygen photolysis P(O3), of ozone destruction from pure oxygen species (Chapman reactions) L(O x ), and of ozone destruction by nitrogen oxides L(NO x ) were estimated over the three-dimensional atmosphere. These quantities are displayed as zonal average contour maps, summed over various latitude zones, summed over various altitude bands, and integrated globally between 15 and 45 km. Although the global summation between 15 and 45 km by no means tells the complete story, these numbers are of some interest, and the relative values are: P(O3), 100; L(O x ), 15; L(NO x ), 45±15. It is to be emphasized that this relative NO x contribution to the integrated ozone balance is not a measure of the sensitivity of ozone to possible perturbations of stratospheric NO x ; recent model results must be examined for current estimates of this sensitivity.  相似文献   
90.
Formation,history and energetics of cores in the terrestrial planets   总被引:1,自引:0,他引:1  
The cores of the terrestrial planets Earth, Moon, Mercury, Venus and Mars differ substantially in size and in history. Though no planet other than the Earth has a conclusively demonstrated core, the probable cores in Mercury and Mars and Earth's core show a decrease in relative core size with solar distance. The Moon does not fit this sequence and Venus may not. Core formation must have been early (prior to ~4 · 109 yr. ago) in the Earth, by virtue of the existence of ancient rock units and ancient paleomagnetism and from UPb partitioning arguments, and in Mercury, because the consequences of core infall would have included extensional tectonic features which are not observed even on Mercury's oldest terrain. If a small core exists in the Moon, still an open question, completion of core formation may be placed several hundred million years after the end of heavy bombardment on tectonic and thermal grounds. Core formation time on Mars is loosely constrained, but may have been substantially later than for the other terrestrial planets. The magnitude and extent of early heating to drive global differentiation appear to have decreased with distance from the sun for at least the smaller bodies Mercury, Moon and Mars.Energy sources to maintain a molten state and to fuel convection and magnetic dynamos in the cores of the terrestrial planets include principally gravitational energy, heat of fusion, and long-lived radioactivity. The gravitational energy of core infall is quantifiable and substantial for all bodies but the Moon, but was likely spent too early in the history of most planets to prove a significant residual heat source to drive a present dynamo. The energy from inner core freezing in the Earth and in Mercury is at best marginally able to match even the conductive heat loss along an outer core adiabat. Radioactive decay in the core offers an attractive but unproven energy source to maintain core convection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号